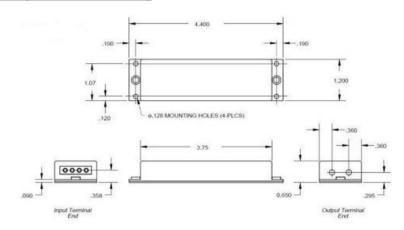


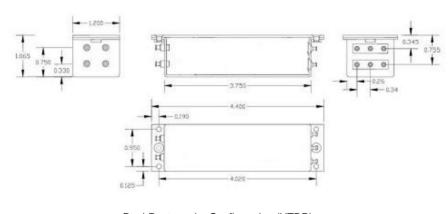
HTR/HTDR Series

200° C High Voltage Power Supply

General Description


The HTR/HTDR Series high voltage power supplies are designed to operate at extreme temperatures and in harsh environments especially for the oil well logging industry. The HTR/HTDR units provide up to 3kV at 100 uA of regulated output, with either positive or negative polarity. All models are adjustable over a 3:1 output voltage range by either voltage or resistance programming. Temperature drift is less than 20 ppm/deg C by using advanced internal reference and drift compensation techniques. All models are reverse input and output arc and short circuit protected.

Features


- Regulated
- Encapsulated and Shielded
- Voltage and Resistance programmable
- 1kV, 2kV and 3kV available
- Various input voltages available
- Positive or Negative Polarity

Connection Diagram/ Outline Drawing

Single-Rectangular Configuration (HTR)

Dual-Rectangular Configuration (HTDR)

Electrical Characteristics

(at 25 degrees C unless otherwise specified)

Parameter	Conditions		Value	/alue	Units
		Min	Typical	Max	
Supply Voltage*:	HTR/HTDR - 15 HTR/HTDR - 24 HTR/HTDR - 30	14 VDC 22 VDC 27 VDC	15VDC 24VDC 30VDC	16 VDC 26 VDC 33 VDC	VDC VDC VDC
Input Current:	No Load (-15 model): No Load (-24 model): No Load (-30 model): Full Load (-15 model): Full Load (-24 model):	45 30 30 75 36	50 35 35 80 40	55 40 40 85	mA mA mA mA
Output Ripple:	Full Load (-30 model): No Load (all models): Full Load (all models):	36 0.015 % 0.02 %	40 0.02 % 0.03 %	.03 % 0.035%	mA Vpp Vpp
Load Regulation:	No Load to Full Load Half Load to Full Load	0.01 % 0.01 %	0.02 % 0.01 %	0.035 % 0.025 % 0.01 %	V _{NL} /V _L V _{NL} /V _L
Output Linearity	No Load		1%		Д Vоит
Output Linearity	Full Load (all models):		1%		ΔVουτ (i ΔVουτ ΔVουτ (i
Short Circuit Current:	(maximum input current)		100	125	mA
Power Efficiency:	Full Load	20%	25%	30%	Роит Рім
Reverse Input Polarity	Protected to 50 VDC				
Temperature Drift:	No Load Full Load			25 25	ppm/De
Thermal Rise:	No Load (case) Full Load (case)			2 5	degree:
Slew Rate (10% - 90%)	No Load Full Load			100 120	mS mS
Slew Rate (90% - 10%)	No Load Full Load			200 100	mS mS
Drain Out Time	No Load (5 TC)			150	mS

Physical Characteristics

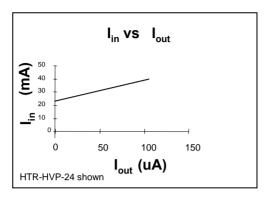
(at 25 degrees C unless otherwise specified)

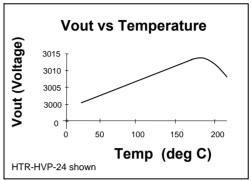
Rectangular Shape (HTR)

Parameter	Conditions	Value	Units
Dimensions	MKS	127 L x 28 W x 13.5 H	mm
	English	5 L x 1.10 W x 0.53 H	inches
Volume:	MKS	48	cm ³
	English	2.9	inch ³
Weight:	MKS	120	grams
	English	4.3	oz
Packaging:	Black anodized Aluminum epoxy encapsulation		
Terminations:	Input: Output:	Teflon Terminals Teflon Terminals	

Dual-Rectangular Shape (HTDR)

Parameter	Conditions	Value	Units
Dimensions	MKS English	127 L x 28 W x 26.7 H 5 L x 1.10 W x 1.05 H	mm inches
Volume:	MKS English	95 5.78	cm ³ inch ³
Weight:	MKS English	155 5.47	grams oz
Packaging:	Black anodized Aluminum epoxy encapsulation		
Terminations:	Input: Output:	Teflon Terminals Teflon Terminals	


Environmental Characteristics


(at 25 degrees C unless otherwise specified)

case temperature	-40 degrees to + 200 degrees -40 degrees to + 392 degrees	Celsius Fahrenheit
MIL-STD-810 Method 516	200 g's	Proc IV
pins sealed against corona pins sealed against corona	-350 to + 16,700 -1,000 to +55,000	meters feet
MIL-STD-810 Method 514	20 g's	Curve E
MIL-STD-810 Method 504	-40 deg C to +200 deg C	Class 2
	case temperature MIL-STD-810 Method 516 pins sealed against corona pins sealed against corona MIL-STD-810 Method 514	case temperature -40 degrees to + 392 degrees MIL-STD-810 Method 516 200 g's pins sealed against corona pins sealed against corona MIL-STD-810 Method 514 20 g's

HTR/HTDR Series Performance Charts

HTR/HTDR Series Application Notes

HTR/HTDR Series high voltage power supplies are regulated against both line and load changes. Input current as a function of load is shown above, as is output voltage as a function temperature. Setting the output voltage to a fixed value which is lower than the unit's maximum output can be accomplished by either of two methods. In the resistance programming mode, a resistor is inserted between the Control Pin and the Ground Pin. For positive output units, a resistance value of zero Ohms yields the maximum output voltage. Figure 1 shows the connections for a positive output power supply. Figure 2 shows the output voltage as a function of control resistor.

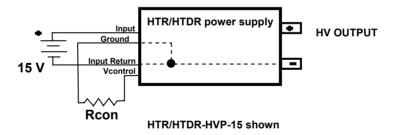


Figure 1: Resistance program of positive output of HTR/HTDR

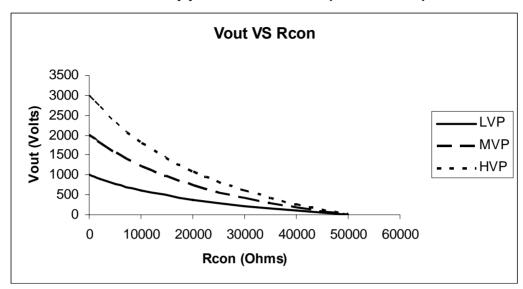


Figure 2: Positive Style HTR/HTDR Output Voltage as a function of control resistor

Some models of the HTR/HTDR Series high voltage power supplies can provide a negative output voltage. To set the output voltage to a fixed value lower than the maximum that the unit can provide is easily accomplished. In the resistance programming mode, a resistor is inserted between the Control Pin and the Ground Pin. For negative output units, an open circuit yields the maximum output voltage. Figure 3 shows the connections for a negative output power supply. Figure 4 shows the output voltage as a function of control resistor.

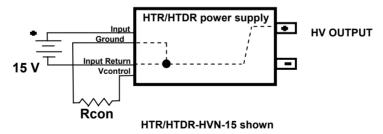


Figure 3: Resistance program of negative output of HTR/HTDR

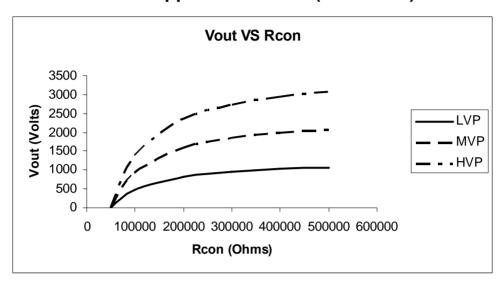


Figure 4: Negative Style HTR/HTDR Output Voltage as a function of control resistor

All HTR/HTDR power supplies can be controlled by an external reference voltage placed into the Control Pin. Figure 5 details this connection for positive style output units while Figure 6 shows the effect of this external voltage on the output voltage of the unit. The power supply will regulate at the set voltage and be stable against line and load variations as long as the external control voltage is fixed in magnitude.

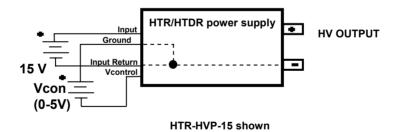


Figure 5: Voltage program of positive output of HTR/HTDR

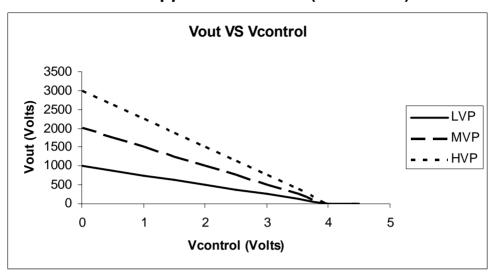


Figure 6: Positive Style HTR/HTDR Output Voltage as a function of program voltage

Negative output HTR/HTDR power supplies can also be controlled by an external reference voltage placed into the Control Pin. Figure 7 details this connection for negative style output units while Figure 8 shows the effect of this external voltage on the output voltage of the unit. The power supply will regulate at the set voltage and be stable against line and load variations as long as the external control voltage is fixed in magnitude.



Figure 7: Voltage program of negative output of HTR/HTDR

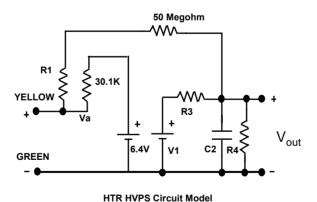



Figure 8: Negative Style HTR/HTDR Output Voltage as a function of program voltage

Equivalent HTR Circuit Model

R1 = 201K Ohm (LVP), 100K Ohm (MVP), 67K Ohm (HVP) 90K Ohm (LVN), 30K Ohm (MVN), 10K Ohm (HVN)

R3 = 1 K Ohms

R4 = 100 Megohms

 $C2 = (3 \times 10^{-9})$ Farads

V1 = Positive output units: 4.01 + (2 E8) / R1 - (50 E6)(Va)/R1

= Negative output units: (50 E6)(Va)/R1 - (2 E8)/R1 + 4.01

Ordering Information:

Single-rectangular Shape:

X = Output voltage range: L = 1KV, M = 2KV, H = 3KV HTR-XVY - Z

Y = polarity P = positive, N = negative

Z = Input voltage 15, 24, 30

Example:

HTR-LVP-24: Maximum output = 1,000 V positive polarity 24 VDC input HTR-HVN-30: Maximum output = 3,000 V negative polarity 30 VDC input

Dual-rectangular Shape:

X = Output voltage range: L = 1KV, M = 2KV, H = 3KV HTDR-XVY - Z

Y = polarity P = positive, N = negative

Z = Input voltage 15, 24, 30

Example:

HTDR-LVP-24: Maximum output = 1,000 V positive polarity 24 VDC input (two independent output supplies) HTDR-HVN-30: Maximum output = 3,000 V negative polarity 30 VDC input (two independent output supplies)